Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Intervirology ; 63(1-6): 2-9, 2020.
Article in English | MEDLINE | ID: covidwho-889977

ABSTRACT

BACKGROUND: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its disease CO-VID-19 has strongly encouraged the search for antiviral compounds. Most of the evaluated drugs against SARS-CoV-2 derive from drug repurposing of Food and Drug Administration-approved molecules. These drugs have as target three major processes: (1) early stages of virus-cell interaction, (2) viral proteases, and (3) the viral RNA-dependent RNA polymerase. SUMMARY: This review focused on the basic principles of virology and pharmacology to understand the importance of early stages of virus-cell interaction as therapeutic targets and other main processes vital for SARS-CoV-2 replication. Furthermore, we focused on describing the main targets associated with SARS-CoV-2 antiviral therapy and the rationale of drug combinations for efficiently suppressing viral replication. Key Messages: We hypothesized that blocking of both entry mechanisms could allow a more effective antiviral effect compared to the partial results obtained with chloroquine or its derivatives alone. This approach, already used to achieve an antiviral effect higher than that offered by every single drug administered separately, has been successfully applied in several viral infections such as HIV and HCV. This review will contribute to expanding the perception of the possible therapeutic targets in SARS-CoV-2 infection and highlight the benefits of using combination therapies.


Subject(s)
Antiviral Agents/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Replication/drug effects , COVID-19/virology , Clinical Trials as Topic , Drug Design , Drug Therapy, Combination , Host Microbial Interactions/drug effects , Humans , Virus Internalization/drug effects , COVID-19 Drug Treatment
2.
Biomolecules ; 10(6)2020 Jun 24.
Article in English | MEDLINE | ID: covidwho-613362

ABSTRACT

The pandemic associated with Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV2) and its disease named COVID-19 challenged the scientific community to discover effective therapeutic solutions in a short period. Repurposing existing drugs is one viable approach that emphasizes speed during these urgent times. Famotidine, a class A G protein-coupled receptor antagonist used for the treatment of gastroesophageal reflux was recently identified in an in silico screening. Additionally, a recent retrospective clinical report showed that the treatment with famotidine provided a good outcome in patients infected with SARS-CoV2. A clinical trial testing effectiveness of famotidine in combination with hydroxychloroquine is currently ongoing in the United States (US). In the 1990s, famotidine was described as an antiviral agent against human immunodeficiency virus (HIV). Interestingly, some HIV protease inhibitors are presently being used against SARS-CoV2. However, it is not clear if famotidine could be effective against SARS-CoV2. Thus, by using a computational analysis, we aimed to examine if the antiviral effect of famotidine could be related to the inhibition of proteases involved in the virus replication. Our results showed that famotidine could interact within the catalytic site of the three proteases associated with SARS-CoV2 replication. However, weak binding affinity of famotidine to these proteases suggests that a successful famotidine therapy could likely be achieved only in combination with other antiviral drugs. Finally, analysis of famotidine's pharmacokinetic parameters indicated that its effect against SARS-CoV2 infection could be reached only upon intravenous administration. This work will contribute to the pharmacological knowledge of famotidine as an antiviral agent against SARS-CoV2.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Famotidine/therapeutic use , Pneumonia, Viral/drug therapy , Receptors, G-Protein-Coupled/antagonists & inhibitors , Administration, Intravenous , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , COVID-19 , Computer Simulation , Drug Repositioning , Famotidine/administration & dosage , Famotidine/pharmacokinetics , Humans , Models, Molecular , Molecular Docking Simulation , Pandemics , Protease Inhibitors/administration & dosage , Protease Inhibitors/pharmacokinetics , Protease Inhibitors/therapeutic use , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL